Let Machine Learning Turn into Your Side Hustle with Automated Content Generation : Step-by-Step Beginner's Guide
Machine learning, particularly in the field of Natural Language Processing (NLP), offers exciting opportunities for students and freelancers to create side hustles. Here's a simple, realistic plan tailored for individuals with no prior experience:
Step 1: Understand the Basics of NLP
Before diving into content generation, familiarize yourself with Natural Language Processing (NLP). It’s the technology behind text generation and optimization. Start with free resources like introductory articles or YouTube tutorials. Key concepts to learn include:
Tokenization: Breaking text into smaller units (words or phrases).
Sentiment Analysis: Understanding the emotional tone of text.
Text Generation: Using AI models to create human-like text.
Here's a ready-made Python code to get you started with tokenization and sentiment analysis:
python# Import necessary libraries import nltk from nltk.tokenize import word_tokenize, sent_tokenize from textblob import TextBlob import tensorflow as tf import tensorflow_datasets as tfds import numpy as np # Download necessary NLTK data nltk.download('punkt') nltk.download('averaged_perceptron_tagger') # Step 1: Tokenization def tokenize_text(text): # Word tokenization words = word_tokenize(text) print("Word Tokenization:", words) # Sentence tokenization sentences = sent_tokenize(text) print("Sentence Tokenization:", sentences) # TextBlob tokenization blob = TextBlob(text) print("TextBlob Tokenization:", blob.words) # Example text for tokenization example_text = "Hello, world! This is a sample text for tokenization. It contains multiple sentences." # Tokenize the example text tokenize_text(example_text) # Step 2: Sentiment Analysis def analyze_sentiment(text): # Using TextBlob for sentiment analysis blob = TextBlob(text) sentiment = blob.sentiment.polarity if sentiment > 0: print("The sentiment is positive.") elif sentiment < 0: print("The sentiment is negative.") else: print("The sentiment is neutral.") # Example texts for sentiment analysis positive_text = "I love this product! It's amazing and works perfectly." negative_text = "This is the worst product I've ever bought. It's a complete waste of money." # Analyze sentiment print("\nSentiment Analysis:") analyze_sentiment(positive_text) analyze_sentiment(negative_text) # Step 3: Text Generation (using a simple LSTM model) # Load the Tiny Shakespeare dataset dataset, info = tfds.load('tiny_shakespeare', with_info=True, as_supervised=False) # Preprocess the data def preprocess_data(dataset): text = [] for example in dataset['train']: text.append(example['text'].numpy().decode('utf-8')) text = ' '.join(text) return text # Tokenize the text tokenizer = tf.keras.preprocessing.text.Tokenizer(char_level=True) tokenizer.fit_on_texts([preprocess_data(dataset)]) total_words = len(tokenizer.word_index) + 1 # Create sequences for training input_sequences = [] for line in preprocess_data(dataset).split('\n'): token_list = tokenizer.texts_to_sequences([line])[0] for i in range(1, len(token_list)): n_gram_sequence = token_list[:i+1] input_sequences.append(n_gram_sequence) # Pad sequences max_sequence_len = max([len(x) for x in input_sequences]) input_sequences = np.array(tf.keras.preprocessing.sequence.pad_sequences(input_sequences, maxlen=max_sequence_len, padding='pre')) # Create predictors and label X, y = input_sequences[:,:-1],input_sequences[:,-1] y = tf.keras.utils.to_categorical(y, num_classes=total_words) # Build the model model = tf.keras.Sequential([ tf.keras.layers.Embedding(total_words, 100, input_length=max_sequence_len-1), tf.keras.layers.LSTM(150, return_sequences=True), tf.keras.layers.LSTM(150), tf.keras.layers.Dense(total_words, activation='softmax') ]) # Compile the model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Train the model model.fit(X, y, epochs=10, verbose=1) # Function to generate text def generate_text(seed_text, next_words, model, max_sequence_len): for _ in range(next_words): token_list = tokenizer.texts_to_sequences([seed_text])[0] token_list = tf.keras.preprocessing.sequence.pad_sequences([token_list], maxlen=max_sequence_len-1, padding='pre') predicted = model.predict(token_list, verbose=0) predicted = np.argmax(predicted, axis=-1) output_word = "" for word, index in tokenizer.word_index.items(): if index == predicted: output_word = word break seed_text += " " + output_word return seed_text # Generate text seed_text = "To be or not to be" generated_text = generate_text(seed_text, 20, model, max_sequence_len) print("\nGenerated Text:", generated_text)
Tokenization: The
tokenize_text
function demonstrates word and sentence tokenization using NLTK and TextBlob.Sentiment Analysis: The
analyze_sentiment
function uses TextBlob to determine the sentiment of given text.Text Generation: A simple LSTM model is trained on the Tiny Shakespeare dataset to generate text based on a seed phrase.
Remember, this is a basic example to get you started. For real-world applications, you might need to fine-tune models, use more sophisticated techniques, or leverage pre-trained models like those from Hugging Face's Transformers library for better results.
Step 2: Choose Free or Affordable Tools
You don’t need to build models from scratch. Start by using pre-built AI tools that are beginner-friendly:
- ChatGPT: Ideal for generating blog posts, captions, and product descriptions.
- Narrato AI: Automates social media and blog content creation.
- Rytr: Provides templates for short-form content like ads and emails.
Here's a ready-made Python code to help beginners choose and explore free or affordable AI tools for content generation:
Here's a ready-made Python code to help beginners choose and explore free or affordable AI tools for content generation:
pythonimport requests import json # Step 2: Choose Free or Affordable Tools def get_chatgpt_response(prompt): """ Function to get a response from ChatGPT API. Note: You need to replace 'YOUR_API_KEY' with your actual API key. """ url = "https://api.openai.com/v1/chat/completions" headers = { "Content-Type": "application/json", "Authorization": f"Bearer YOUR_API_KEY" } data = { "model": "gpt-3.5-turbo", "messages": [{"role": "user", "content": prompt}], "temperature": 0.7 } response = requests.post(url, headers=headers, data=json.dumps(data)) if response.status_code == 200: return response.json()['choices'][0]['message']['content'] else: return f"Error: {response.status_code}" def get_narrato_content(prompt): """ Function to get content from Narrato AI. Note: You need to replace 'YOUR_API_KEY' with your actual API key. """ url = "https://api.narrato.io/v1/content" headers = { "Content-Type": "application/json", "Authorization": f"Bearer YOUR_API_KEY" } data = { "prompt": prompt, "tone": "informative", "length": "short" } response = requests.post(url, headers=headers, data=json.dumps(data)) if response.status_code == 200: return response.json()['content'] else: return f"Error: {response.status_code}" def get_rytr_content(prompt): """ Function to get content from Rytr API. Note: You need to replace 'YOUR_API_KEY' with your actual API key. """ url = "https://api.rytr.me/v1/generate" headers = { "Content-Type": "application/json", "Authentication": f"Bearer YOUR_API_KEY" } data = { "prompt": prompt, "use_case": "blog_post", "tone": "informative", "length": "short" } response = requests.post(url, headers=headers, data=json.dumps(data)) if response.status_code == 200: return response.json()['content'] else: return f"Error: {response.status_code}" # Example usage if __name__ == "__main__": # ChatGPT print("ChatGPT Response:") print(get_chatgpt_response("Generate a blog post about the benefits of yoga.")) # Narrato AI print("\nNarrato AI Content:") print(get_narrato_content("Create a social media post about a new product launch.")) # Rytr print("\nRytr Content:") print(get_rytr_content("Write an email draft for a customer support request."))
- ChatGPT: The get_chatgpt_response function sends a prompt to the ChatGPT API and returns the generated content. You need to replace YOUR_API_KEY with your actual API key.
- Narrato AI: The get_narrato_content function sends a prompt to the Narrato AI API to generate content. Replace YOUR_API_KEY with your actual API key.
- Rytr: The get_rytr_content function sends a prompt to the Rytr API to generate content. Replace YOUR_API_KEY with your actual API key.
If this is your first time running a python code, I'd suggest using Visual Studio Code. The setup is really easy and takes just 5 minutes.
Comments
Post a Comment